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Parameters of social time

* Duration — How long?

* Tempo — How much?

* Timing — When?

* Sequence — In what order?

In time-use studies mostly only durations are
studied intensively: durations are added,
subtracted, ... just like social time is a
homogeneous flux as conceptualized in
Newtonian time in natural sciences
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Social time

ne flow of the day is NOT a succession of
entical moments

o T

ne ‘quality’ of time is related to the

parameters of time

* Time-use data provide a wealth of details
(context) ... we need statistical techniques to
deal with this complexity and to do justice to
the ‘social’ quality of time
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Optimal Matching Analysis

* Optimal Matching Analysis (OMA) comes
from molecular biology and was aimed at the
decryption of DNA sequences

* The technique was introduced in the social
science by Andrew Abbott ...

* ... and introduced in time-use research bij
Laurent Lesnard (2004, 2006, 2008).

* The first part of this presentation is mainly
based on Lesnard 2004
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Main idea

* OMA is basically an algorithm that calculates
a distance matrix between a set of sequences

W Sleep

W Bathroom

“ Breakfast

& Travel

& Paid Work

“ Household work

= Lunch
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* OMA is a way to measure the degree of
dissimilarity between any pair of sequences

* In OMA, the dissimilarity between sequences
is the cost required to make the two
sequences identical with the help of three

basis operations: insertion, deletions (indel e
operations) and substitution
* Each operation is associated with a cost and ¥

the dissimilarity produced by OMA is the
minimum total cost required to match two
sequences




OMA in a nutshell

Example:
X: AAAARB
Y. ABBB
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OMA in a nutshell

We can transform X in Y by 3 deletions and 2
Insertions:

X: AAAAB
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X: A=A=A A B (3 deletions)

X: A=A=A A B B B (3 deletions & 2 insertions)
Y ABBB




OMA in a nutshell

We can transform X in Y by 1 deletion and 3
substitutions:

X: AAAAB
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X: A AA A E (1deletion)

X: AB BB B (1deletion & 3 substitutions)
Y ABBB




* |f a cost is associated with each operation
then it is possible to determine the

dissimilarity (as the minimum cost to achieve
sequence matching)

* Traditionally each indel operation costs one

unit Ko
* The choice of the substitution cost depends

on the interpretation of replacing one state

by another; if the transitions do not have a

meaning, the substitution cost is usually set
to two units (Abbott, 2000) (10)




OMA in a nutshell

* |In time-use studies transitions do have a
meaning; the transition from work to non-
work is quite common between 5 and 6 pm,
quite rare between 1 and 2 am
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* Indel-operations are neither neutral in time-
use studies: indel operations tend to separate
events from their timing of occurrence ¥
thereby warping the temporal structure [ve




Using the collective rhythm to
determine the substitution costs

* Since indel-operations do warp the temporal
structure, it is better to avoid them in time-
use studies
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* Since a single transition matrix does not take
the temporal variations into account that are @
the essence of social time — sequences and *'
transitions between activities are an inherent ¥
aspect of collective rhythms — Lesnard (2004) [ve
proposed to derive substitution costs from
the observed transitions between states [ 12]




Using the collective rhythm to
determine the substitution costs

Consequently, we have a transition matrix for
each time slot in the sequences we are
comparing (f.i. 144 ten-minute intervals in the
day cycle):

The rarer the transition shift between two

states in a single time slot, the higher the
distance between these states

The distance at every moment between two
individuals depends on the probablity that this
transition occurs at that moment in the entire
population
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Example: working time patterns in
Belgium 1966-1999

Glorieux, I., I. Mestdag & J. Minnen (2008) The
Coming of the 24-hour Economy? Changing work
schedules in Belgium between 1966-1999. Time &
Society, 17,1: 63-83.
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Goal: studying evolutions in working time patterns \@
between 1966 - 1999

Universiteit




Example: working time patterns in
Belgium 1966-1999

Belgian data of the Multinational Comparative Time-
Budget Research project 1966 (Szalai’66) and
the TUS-survey of Statistics Belgium (TUS’99)
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* Szalai’66, N=2077
19 to 65 years - 1 diary day
* TUS'99, N=8382
12 to 95 years - 1 week day and 1 weekend day

Pooled data for weekdays of both Time Use Surveys of i
the respondents between 19 and 65 years old who
registered at least one hour of paid work
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Example: working time patterns in
Belgium 1966-1999

* When do Belgians work?

* Which evolutions occurred between 1966 and
1999 in working time patterns

* Which socio-demographic characteristics are
related with specific working time patterns (in
1966 and 1999)?
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Example: working time patterns in

Belgium 1966-1999
Tempogram ‘paid work’ 1966-1999
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Example: working time patterns in
Belgium 1966-1999
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e Under the surface of an average tempogram, a
variety of different work time patterns may be
hidden

e Goal: the identification of different types of
working time patterns by means of sequence
analysis (OMA)




Sequence analysis

the difference between each pair of
individual sequences, in this case individual work

¢ assessing

work — non-work)
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Example: working time patterns in
Belgium 1966-1999

Sequence analysis
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* the analysis must take into account more than just
the number of work to non-work substitutions
necessary to equate work-day schedules since
some substitutions are more probable than others, |
given their timing @

* Dynamic Hamming distances: only substitutions —
cost of substitutions based on the probability of ¥
this (f.i. transition from non-work to work rather '
‘normal’ — low cost - between 8 and 9:30 am,
rather ‘unusual’ — high cost - between 1 and 2 am)




Example: working time patterns in
Belgium 1966-1999

Cluster analysis
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* The dynamic Hamming distance procedure,
performed by SAS or R, results in a dissimilarity
matrix containing the distances between all
possible pairs of sequences

* The matrix of distances between sequences is
then used as input for a clustering algoritm

* Result: 12 clusters -> 5 general types of work =
schedules
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FIGURE 2
Tempograms and mean sequences for paid work carried out on weekdays for
1966 and 1999 for all 12 types of work schedules
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Individual tempogram: individual sequences are represented horizontally. Black
indicates work spells and light gray non-work spells.
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Figure 6 — Aggregate tempogram of the classification of work days
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Example: activity patterns in
Flanders, Belgium 1999-2004

Van Tienoven, T-P, |. Glorieux, |. Laurijssen & J. Minnen
(2011) The social structure of time: optimal matching from
time-use data. In: Carrasco Juan Antonio, Jara-Diaz Sergio
& Munizaga Marcela (Eds.), Time Use Observatory,
Santiago de Chile: Grafica LOM: 141-157

Goal: discriminating activity patterns characterized by paid
work and leisure
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Example: activity patterns in
Flanders, Belgium 1999-2004

* Data
* Pooled Flemish time-use surveys of 1999 and 2004
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* 7-day diary registration - selection of one weekday
* 2,285 individuals between 18 and 64 years old

e Structure
* Each day = 144 ten-minute ‘states’
* Possible states

* Paid work e Leisure
* Domestic work e Sleeping srssel
* Personal care e Residual time

* Watching TV




Example: activity patterns in
Flanders, Belgium 1999-2004

Sequence analysis

* Hamming distances: only subsitutions

W
D
¥e)
c
)
>
(@)
M
Q)
>
Q)
<
=0
wn

* Cost of substitutions asigned to each state individually:
paid work = 4, domestic work = 3, personal care = 2,
watching TV = 8, leisure = 8, sleeping = 1, residual = 1

* So, substituting paid work by leisure would cost 4 + 8 =
12, personal care for leisure: 2 + 8 = 10, etc.

* These costs were then devided by 16 (max. cost), so all e
costs lie between O and 1




Example: activity patterns in
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Paid  Domestic Personal Watching
work work care TV Leisure Sleeping Residual
Paid work 000 4375 3750 .7500 7500 3125 3125
Domestic work .000 3125 6875 6875 2500 2500
Personal care 000 6250 6250 1875 1875
Watching TV 000 i 5625 5625 \@\
Leisure .000 5625 5625
Sleeping .000 1250
Residual 000 .
l |
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Figure 2. Seven time-use patterns on weekdays based on paid work and leisure
(TOR’99/TOR’04 - 18 to 64 year-olds) - n=respondents in pattern; TP=average score for

time pressure within pattern. =
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